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Abstract

The immune system imposes costs that may have to be traded against investment of resources in other costly life-history
traits. Yet, it is unknown if a trade-off between immunity and longevity occurs in free-ranging mammals. Here, we tested if
age and survival, two aspects associated with longevity, are linked to immune parameters in an 8 g bat species. Using a
combination of cross-sectional and longitudinal data, we assessed whether total white blood cell (WBC) counts, bacterial
killing ability of the plasma (BKA) and immunoglobulin G (IgG) concentration change with age. Furthermore, we asked if
these immune parameters impose costs resulting in decreased survival probabilities. We found that WBC counts decreased
with age both within and among individuals. IgG concentrations were higher in older individuals, but did not change with
age within individuals. Furthermore, individuals with above average WBC counts or IgG concentration had lower
probabilities to survive the next six months. High WBC counts and IgG concentrations may reflect infections with parasites
and pathogens, however, individuals that were infected with trypanosomes or nematodes showed neither higher WBC
counts or IgG concentrations, nor was infection connected with survival rates. BKA was higher in infected compared with
uninfected bats, but not related to age or survival. In conclusion, cellular (WBC) and humoral (IgG) parts of the immune
system were both connected to age and survival, but not to parasite infections, which supports the hypothesis that
energetically costly immunological defences are traded against other costly life-history traits, leading to a reduced lifespan
in this free-ranging mammal.
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Introduction

By exploiting host resources, parasites and pathogens inflict

damages and therefore impose a negative effect on host fitness (e.g.

[1]). Mounting and maintaining immune functions provide an

animal with a set of cellular and biochemical defence mechanisms

against potentially harmful agents, but such traits are also

energetically costly (reviewed in [2]). Previous studies on potential

trade-offs between immunity and other life-history traits focussed

mainly on the relationship between immunity and reproduction.

For example, it has been shown that the immune system may get

impaired when energy has to be allocated largely to current

reproductive events [3,4]. In contrast, the relationship between

immune response and other life-history traits such as longevity is

largely unknown, particularly in free-ranging mammals.

Similarly to other eco-immunological questions, most evidence

for the potential trade-off between immunity, survival and

longevity have been studied in birds [5–7] and in laboratory

mammals such as domestic mice [8]. In captive voles (Microtus
arvalis) for example, it has been shown that immune challenges do

not influence longevity, neither in males nor females [9], but such

data is lacking on free-ranging mammals. Studies performed under

laboratory conditions may result in reduced mortality (e.g. ad
libitum food, constant veterinarian surveillance) and thus pro-

longed lifespans. Therefore, such studies may be biased regarding

the strength of potential age-related trade-offs between immunity

and longevity. For example, the relevance of a trade-off expressed

late in life could be null for laboratory animals outliving their

conspecific in the wild. To shed light on the functional relationship

between the immune system and survival in mammals, studies on

free-ranging animals are therefore urgently needed [10]. So far,

studies on the link between selected immune components and

survival in a free-ranging mammal have concentrated on a

population of Soay sheep (Ovis aries). For example, it has been

shown that antinuclear antibody concentrations were associated

with reduced reproduction but increased survival during harsh

winters [11]. Yet, how other aspects of the immune system are

associated with longevity in mammals remains to be determined.

Besides survival, senescence is another important component

characterising longevity in animals. With increasing age, irrevers-

ible physiological and molecular changes accumulate and impair

the performance of individuals, including the immune system [12].

Evidence for a decrease in immune functions with age (immuno-
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senescence) has been found in humans, domestic and species living

in laboratory conditions [13–19]. Studies on senescence in free-

ranging mammals are rare, probably due to difficulties in

estimating an individual’s age in the field. To our knowledge, a

cross-sectional study on immunosenescence in Soay sheep [20] is

the only one comparing immune parameters of juvenile, adult and

geriatric individuals in a free-ranging mammalian population.

However, patterns from cross-sectional studies may be confounded

by the selective disappearance of particular phenotypes with age

and therefore, longitudinal data would be needed in order to shed

light on trade-offs between branches of the immune system and

aspects of longevity, such as survival and senescence [21,22].

Here, we aim at testing potential trade-offs between immune

components and survival, and furthermore ask if both cellular and

humoral immune components change with age (immunosenes-

cence) using a combination of cross-sectional and longitudinal data

in a free-ranging population of male and female greater sac-

winged bats (Saccopteryx bilineata). We make use of long-term

data collected on this population, including data on longevity. We

predict that aspects of the immune system decrease with increasing

age in a longitudinal approach due to immunosenescence, and in a

cross-sectional approach due to selective disappearance of

individuals with overly high levels of immune components.

Furthermore, we predict reduced survival in individuals that

invest more than average in costly cellular aspects [23] of the

immune system.

Materials and Methods

Ethics statement
Capturing and sampling of bats was approved by the

Committee for Ethics and Animal Welfare of the Leibniz Institute

for Zoo and Wildlife Research (Approval No. 2010-09-01), the

scientific committee of ‘‘La Selva’’ Biological Station and by the

national authorities of Costa Rica (No. 137-2010-SINAC and

168-2011-SINAC) and complied with the current laws of the

country. Saccopteryx bilineata is listed as ‘‘least concerned’’ by the

IUCN and not protected in Costa Rica.

Study system
Greater sac-winged bats (Saccopteryx bilineata) show high roost

fidelity and are therefore an ideal study organism for research

questions related to ageing. At our Costa Rican study site, this

species has been monitored for more than 15 years [24]. Six

colonies roost in abandoned buildings surrounded by primary and

secondary rain forest at ‘‘La Selva’’ Biological Station (10u259N;

84u009W, Province Heredia).

Estimating age
As part of a long-term project all individuals are marked with

numbered and coloured plastic rings (AC Hughes LTD.,

Middlesex, UK, size XCL) and the date of the first capture is

reported in a database. Most juveniles were caught and marked

during their year of birth in summer, so that we know the age of

individuals that were marked as juveniles. However, new

unmarked adult individuals are occasionally caught, of which we

do not have direct information about the year of birth. The age of

these individuals was therefore estimated with the help of the

knowledge that we have on the social structure of this species:

Following the approach outlined in Greiner and colleagues [24],

we assumed that unmarked females found in colonies after the

lactation period are immigrants that were born either in the year

of capture if caught in winter (age = 1) or in the previous year

(age = 2) if caught in summer. This is based on the finding that

female juveniles disperse after getting weaned in late summer to

avoid inbreeding with their father, while male offspring remain in

their natal colony [25]. We assigned the age of males that were

marked as adults in the same way, assuming that unmarked adult

males were not caught during their juvenile stage, as they were

probably roosting in a more remote place of the colony. Such

assignments were done for in total 32 out of 128 individuals (17

aged as 1 year old; 10 aged 2 years; 1 aged 3 years; 1 aged 4 years;

2 aged 5; 1 aged 6 years).

Estimating survival
Survival was estimated from census data collected during two

seasons each year (once during sample collection in November/

December, and once during July/August the next year) during the

day. In the colony, individuals do not form clusters but remain at a

minimum distance of 5–8 cm from each other [26]. This allowed

us to identify bats either by taking photographs of the colony and

identifying the individuals later on by matching the coloured rings

with the database, or by identifying the colour of rings with short-

range binoculars. Colony members were well habituated to the

presence of an observer, enabling us to identify and observe

individuals from a distance of 3–8 meters.

In order to estimate survival, we checked whether an individual

that was sampled in November/December was reported to be

present in the colony in July/August the next year. The probability

for a marked male being present in the colony on a given day was

previously determined as averaging 98% [27], while females once

they immigrated in a colony had a probability of 91% to be

present in the colony [28]. We visited each colony at least twice

during each season with a break of at least one week between

visits. If an individual was not encountered during both visits and

in the subsequent season, we assumed that this individual

disappeared permanently from the colony after the last observa-

tion, indicating that the individual has died. No individual re-

appeared under these conditions and we therefore set disappear-

ance equal to mortality. As sampling took place in November/

December, after the dispersal event of subadult females, all

sampled females were immigrants from previous summers.

Therefore, we assume that disappearance of females from the

colony in the time period after the sampling is caused by mortality

and not by dispersal [25]. We could largely exclude human

disturbance as a reason for individuals to disappear, as the access

to colonies was restricted. However, at one roosting site, a former

building, space was temporarily used as a storing room, which led

to the disappearance of the whole colony in 2012. We therefore

excluded datapoints from these individuals (N = 12) collected in

2012 from the analysis on the effect of immune parameters on

survival, as disappearance could not be attributed to mortality in

this situation. In order to rule out capturing and handling as a

disturbance that might cause sampled bats to leave the colony, we

occasionally checked for the presence of individuals the day after

the sampling event. None of the sampled bats have been found to

have disappeared from the colony 24 h after sample collection.

Blood sample collection
Blood samples were collected in November and December 2010

and 2011. We captured bats when they returned to their roost at

dusk between 0515 and 0615 hours using monofilament nylon

mist nets (2.5 m height, 3 or 6 m length, Ecotone, Gdynia, Poland)

placed at a minimum distance of 2 m from their daytime roosts. In

one roost, bats were captured with hand nets. None of the females

were pregnant or lactating, since the capturing took place outside

the reproductive season. We identified the sex of all bats and

weighed all individuals using an electronic balance (accuracy at
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0.1 g) and forearm length was measured using a calliper. We

calculated Body Condition Index (BCI) as body mass/forearm

length, a standard method to measure energy reserves relative to a

structural element of the body in bats [29,30]. We took

approximately 50 ml of blood from a total of 79 clinically healthy

individuals (55 in 2010 and 24 in 2011) within 20 min after

capture by puncturing the antebrachial vein with a sterile needle

and collecting the blood with sterile heparinised capillaries. One

drop was used for preparing blood smears on glass slides

(Microscope Slides (76626 mm), cut edges, Menzel, 38116

Braunschweig, Germany), while 10 ml blood was used to quantify

the trypanosomes (see below). From 64 out of 79 individuals, we

gained sufficiently large blood volumes to extract plasma after

centrifugation at 11,500 rpm for 10 min. Plasma was stored at 2

80uC in two aliquots, one for BKA measurement, one for

quantification of immunoglobulin G (IgG) concentration. Drop-

pings excreted by bats during the sampling process were collected

for the identification of helminth infections and stored in formalin

until further analysis. After sampling, bats were immediately

released at the site of capture.

White blood cell counts
As in previous studies on vertebrate immune systems, we

assumed that the number of white blood cells (WBC) represents a

proxy of an animal’s investment into cellular immunity. We

manually estimated total WBC counts by counting 10 visual fields

with a microscope under 200x magnification on blood smears

stained with May-Gruenwald’s (#T863.2, Carl Roth GmbH) and

Giemsa (#T862.1, Carl Roth GmbH) solution, a method that has

been used before in studies on mammalian immunology, including

bats [31–34]. We obtained WBC counts for 47 individuals in 2010

and 23 individuals in 2011. In order to increase the sample size,

we additionally analysed blood smears of individuals sampled from

the same population in 2009 (N = 24; [35]) and 2012 (N = 24). As

the rest of the blood sample from these years were used for other

research purposes, no other immunological parameters than WBC

counts were available from these additional individuals. We

validated this method of estimating WBC counts by repeating

counts on 40 smears, finding no difference between the first and

second count (paired Wilcoxon signed-rank test; V = 358.5;

p = 0.69) and the counts being correlated (Spearman’s rank

correlation; rho = 0.64; p,0.001).

Bacterial killing ability
We measured the constitutive innate immune function by

assessing the bacterial killing ability of plasma (BKA) against

Escherichia coli [36], an assay that has been used in bats before

[34,37]. Measurements were obtained for 40 individuals in 2010

and 24 individuals in 2011. Individual plasma samples were

diluted 1:20 with a CO2-independent media (#18045, Gibco-

Invitrogen, CA) enriched with 4 mM L-Glutamine (#25030,

Gibco-Invitrogen, CA) and 5% Fetal Calf Serum (#S0115,

Biochrom AG). Ten ml of a suspension of living Escherichia coli
(ATCC #8739) was added to 140 ml of diluted sample. Previously,

the number of bacteria in the suspension was adjusted in order

that 50 ml of plasma-bacteria mixtures produces approximately

200 colonies.

The plasma-bacteria mixtures were then incubated for 30 min

at 37uC and afterwards, 50 ml aliquots were spread onto Tryptic

Soy Agar plates (#CP70.1, Carl Roth GmbH) in duplicates. To

obtain the number of bacteria that we had before the interaction

with the plasma, we diluted the bacterial suspension with 140 ml

media without plasma and plated the mixture in duplicates

without previous incubation. We incubated the plates overnight at

37uC and counted the number of colonies formed the following

day. The bacterial killing activity was calculated as the proportion

of bacteria killed during the incubation, corresponding to 1 –

(average of the viable bacteria after incubation/the initial number

of bacteria), and the average was taken from two plates per sample

[34]. BKAs did not differ within individuals as calculated from the

duplicates (paired Wilcoxon signed-rank test; V = 446.5; p = 0.27)

Duplicates were highly correlated (Spearman’s rank correlation;

rho = 0.97; p,0.001).

Immunoglobulin G concentration
Immunoglobulin G (IgG) levels were quantified for 39

individuals in 2010 and 23 individuals in 2011 using a Protein

G ELISA [38]. Protein G, a streptococcal protein, binds IgG from

a number of different wildlife species [39], and it has been

validated to be used in routine serological testing of different bat

species for specific antibody levels [40]. Following initial check-

erboard titrations, we coated microtiter plates (Nunc-ImmunoTM

Plate, NUNCTM Brand Products) with 100 ml of diluted plasma

sample (diluted 1:10.000 in 50 mM NaHCO3, pH 9,5) and

incubated for 1 hour at 37uC. After incubation, plates were

washed twice with Tris-buffered saline-Tween20 solution (TBS-

Tween20). Two hundred ml of 1% gelatine solution (#104070,

Merck) was added to each well for blocking non-specific reagent

binding and plates were incubated for 30 minutes at 37uC.

Subsequently, plates were washed as described above and 100 ml

of Protein G– horseradish peroxidase conjugate (#P-21041,

Invitrogen) at a dilution of 1:12.000 in TBS-Tween20 solution

was added to each well. Following 30-minute incubation at room

temperature, the plates were washed five times in TBS-Tween20.

Wells were then submerged with 100 ml of freshly prepared TMB

solution [10% 3,39,5,59-tetramethylbenzidine (#0411-01, South-

ernBiotech) dissolved in DMSO (#D5879, Sigma Aldrich) was

diluted 1:100 in phosphate-citric-buffer and mixed with 30%

H2O2 (#7475456, Hedinger)] and the reaction was stopped with

1 M acid sulphuric after eight minutes. Plates were then

immediately transferred to a microplate reader (Biotek) and the

absorption was read at 450 nm. According to the Beer–Lambert

law, antibody concentration is directly proportional to the

absorption. We therefore conducted statistical analysis on the

mean optical density (OD) of duplicates measured by the

microplate reader for each sample.

Estimating parasite infections
In order to quantify trypanosome infections of individual bats,

we transferred 10 ml of blood into a micro-capillary and

centrifuged it at 119500 rpm for 3 minutes and 20 seconds

(5,396 g) with a Compur M1100 microhaematocrit centrifuge

(Bayer, 51368 Leverkusen, Germany; [35]). Trypanosomes were

detected visually in 80 individuals after centrifugation of the blood

by examining the buffy coat under the microscope at 200x

magnification. A total of 35 out of 80 bats were infected with

trypanosomes.

For the identification of helminth infections, we conducted

faecal egg counts (FEC) using the McMaster flotation technique

[41] with potassium iodide 1.5 g/ml solution on samples obtained

from 47 individuals (7 in 2009, 28 in 2010 and 13 in 2011) [42].

We classified helminth eggs as cestodes, nematodes or trematodes

according to size and morphology [43]. Individuals were then

assigned to be either infected or not infected by trypanosomes

and/or certain types of helminths. In droppings of 28 out of 47

bats, we encountered eggs of nematode, while only two bats

showed signs of infection with trematodes and none signs of

cestode infections. Therefore, we focused our statistical analysis on
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trypanosome and nematode infections to investigate the influence

of parasites on immune parameters and survival.

Statistical Analysis
In total, we acquired WBC counts of 118 individuals, BKA of

64 individuals and IgG concentrations of 62 individuals (Table

S1). In 18 out of 118 individuals, we counted WBCs in two years

and in 4 individuals WBC counts were obtained from three years.

In 8 out of 64 individuals, we estimated BKAs in two consecutive

years, while IgGs were measured twice in 7 out of 62 individuals.

To test if there are longevity-related changes in immune

parameters due to selective disappearance or individual immuno-

senescence, we used both a cross-sectional and longitudinal

approach: We fitted a generalised linear model (GLM) on the

cross-sectional dataset for each immune parameter, considering

age (1–7 years), BCI (continuous) and sex (2 levels: males, females)

as covariates. To fit the GLM on WBC count, we used a negative

binomial distribution because Poisson distribution led to over-

dispersion. To fit the GLM on BKA and IgG concentration, we

used a Gaussian distribution after applying a power transforma-

tion on the response variable to fulfil linear model assumptions

[44].

To conduct the longitudinal analysis, we performed three tests.

First, we asked whether individuals that were sampled twice in two

consecutive years showed a general change in immune parameters

using Wilcoxon signed rank tests. Of the 4 individuals which were

sampled three times for WBC count, we used both changes from

year 1 to year 2 and from year 2 to year 3 in the analysis. Second,

we tested how departure from average immune condition

influences survival by fitting logistic regression models. In these

new GLMs, the dependent variable was the binary variable

indicating the survival status (1 = survive, 0 = dead) and the

covariates were the sex, age and the standardised residuals derived

from GLM performed on the cross-sectional dataset for the

immune parameter being considered. The standardised residuals

of WBC count, BKA and IgGs represent the immune state of

individuals once the effect of age, BCI and sex is accounted for.

Third, we used Fisher’s exact tests to test if individuals that

survived until the next season were more likely to be infected with

trypanosomes or nematodes than individuals that did not survive,

and we finally tested if infected individuals differed in immune

parameters in comparison to uninfected bats using Mann-Whitney

U tests.

All statistical analyses were performed with the free open-source

statistical software R 3.0.2 [45]. We used the package ‘‘MASS’’

[46] for fitting negative binominal distributions and the package

‘‘car’’ [47] to apply power transformations on the data.

Results

Effect of age on immune parameters
The analysis of our cross-sectional dataset shows age-related

changes in immune parameters, i.e. we found that total WBC

counts decreased with increasing age of individual Saccopteryx
bilineata (GLM: X2

1 = 4.26, p = 0.039; Fig. 1a). In contrast, IgGs

increased with age (GLM: F1,51 = 11.2, p = 0.002; Fig. 1c), and

BKAs were not correlated with age of individuals (GLM:

F1,52 = 0.150, p = 0.70; Fig. 1b). The body condition of individuals

was not related with any of the immune parameters (WBC:

X2
1 = 1.77, p = 0.18; BKA: F1,52 = 1.41, p = 0.24; IgGs:

F1,49 = 0.244, p = 0.62). There was also no evidence for sex-

specific difference in immunological parameters (WBC:

X2
1 = 0.74, p = 0.39; BKA: X2

1 = 0.19, p = 0.67; IgGs:

F1,51 = 0.185, p = 0.67). In our longitudinal data set, total WBC

counts decreased with age within individuals (Wilcoxon signed-

rank test: V = 201; N = 22; p = 0.016; Fig. 2a) and BKA tended to

increase (V = 4; N = 8; p = 0.055; Fig. 2b). We did not observe any

Figure 1. Cross-sectional association between age and immune
parameters in S. bilineata. Dots indicate individual measures while
solid lines outline the expected values predicted from the statistical
models for males (grey line) and females (black line). White blood cell
(WBC) count correlated negatively with age (a), while bacterial killing
ability (BKA) of the plasma did not change with age (b). Concentration
of immunoglobulins (IgG) correlated positively with age (c).
doi:10.1371/journal.pone.0108268.g001
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age-related changes of IgG concentration (V = 22; N = 7; p = 0.21;

Fig. 2c).

Immune parameters as predictors for survival
We found that mortality was high in the population, with 50%

(43 out of 85) of all individuals older than one year not being

observed six months after the last census. The probability of

survival was related to immune parameters. Indeed, survival could

be predicted by residuals of WBC (X2
1 = 4.36, p = 0.037; Fig. 3a)

and of IgGs (X2
1 = 8.87, p = 0.003; Fig. 3c), but not by residuals of

BKA (X2
1 = 0.49, p = 0.48; Fig. 3b). Individuals with WBC counts

and IgG concentrations that were one standard deviation above

the average had 1.7 and 2.9 times less chance to survive to the next

season than average individuals of the same age, BCI and sex. In

general, it was 5 times more likely for females to survive until the

next season than for males (with WBC: Odd-Ratio = 4.14,

X2
1 = 7.51, p = 0.006; with BKA: Odd-Ratio = 4.92, X2

1 = 6.36;

p = 0.012; with IgG: Odd-Ratio = 5.19, X2
1 = 5.63; p = 0.018).

There was no connection between survival probability and BCI

(with WBC: X2
1 = 0.46, p = 0.50; with BKA: X2

1,0.001, p = 0.99;

with IgG: X2
1 = 0.01, p = 0.93). There was also no relationship

between survival and age (with WBC: X2
1 = 0.03, p = 0.87; with

BKA: X2
1 = 1.12, p = 0.29; with IgG: X2

1 = 1.03, p = 0.31).

Parasite infection, immune parameters and survival
We found no evidence that the observed mortality or

immunosenescence was mediated by parasite infections. WBC

counts did not differ between individuals infected and not infected

Figure 2. Changes in immune parameters within individual S.
bilineata. Data of the same individual are connected via a solid line.
White blood cell (WBC) count decreased with age (a) while there was no
change in bacterial killing ability (BKA) of the plasma (b) and
immunoglobulig G (IgG) concentration (c).
doi:10.1371/journal.pone.0108268.g002

Figure 3. Survival probability of individuals with residual
immune parameters. Standardised residuals in immune parameters
depict individuals’ age-, body condition- and sex-specific deviation from
average white blood cell (WBC) count, bacterial killing ability (BKA) of
the plasma and immunoglobulin G (IgG) concentration. Residuals are
plotted against the survival probability (males in grey, females in black).
Individuals with higher WBC count (a) and higher IgG concentration (c)
have lower probabilities to survive until the next season than
individuals with low WBC count and low IgG concentration. BKA was
not correlated with survival (b).
doi:10.1371/journal.pone.0108268.g003

Immune Components versus Age and Survival
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by trypanosomes (Mann-Whitney U test: W = 443, N = 54,

p = 0.66) or nematodes (W = 136, N = 30, p = 0.73). BKA was

higher in bats with trypanosome infections than in uninfected

individuals (W = 53, N = 24, p = 0.030) and tended to be higher in

bats infected with nematodes too (W = 61, N = 26, p = 0.073). IgGs

did not differ between uninfected bats and individuals infected

with trypanosomes (W = 145, N = 26, p = 0.32) or nematodes

(W = 96, N = 27, p = 0.75). Overall, survival probability did not

differ between uninfected bats and individuals infected with

trypanosomes (Fisher Exact Test: p = 0.23) or nematodes (p.

0.99).

Discussion

Understanding how immune parameters vary with age and how

they are traded against other costly life history traits is important in

order to better understand the evolution of the immune system in

general and to predict the influence of environmental conditions

on the health status of free-living individuals and populations.

Here, we obtained data on several aspects of the immune system

from free-ranging greater sac-winged bats (Saccopteryx bilineata).

Focal individuals ranged in age between 1 and 7 years, which

constitute the average lifespan of this species [24,48]. To our

knowledge, this is the first study that addresses the question how

aspects of the immune system are connected with age and survival

in a free-ranging mammal using longitudinal data. Specifically, we

found evidence for i) senescence acting on some immune

parameters and ii) a negative correlation between immune

components and survival.

First, our study brings support for the idea that some immune

components, as most other physiological processes, may decrease

due to senescence of the organism (immunosenescence; [12]).

Indeed, we found that white blood cell (WBC) counts decreased,

while immunoglobulin G (IgG) concentration increased with

increasing age in both males and females. One straight-forward

explanation for this finding would be that individuals with

leucocytosis (high WBC counts) disappear from the population,

as this proxy is a widely used clinical marker both in human and in

veterinarian medicine to diagnose on-going infections. We

therefore tested for a correlation between immune parameters

and infections with parasites. We found that endo- and

hemoparasites were not generally associated with WBC counts

or IgG concentration, although the constitutive humoral immune

competence measured by bacterial killing ability (BKA) of the

plasma was higher in individuals infected with trypanosomes and

tended to be higher with nematode infections. Moreover, albeit

our protocol only allowed for the identification of helminths and

blood parasites, all animals we sampled did not show any clinical

signs of disease, suggesting that high WBC counts and IgG

concentrations were not likely to be caused by on-going infections

from other, potentially more virulent pathogens such as viruses,

bacteria, fungi or other parasites.

The decrease in WBC count with age is therefore more likely to

be caused by immunosenescence. Indeed, we found decreasing

WBC counts in our longitudinal datasets, which supports that this

pattern most likely corresponds to the influence of age within

individuals and is not an artefact caused by selective disappearance

of older individuals with high WBC counts [21]. Several

mechanisms of quantitative cellular immunosenescence have been

found in studies on human gerontology. For example, thymic

involution results in decline of the lymphoid precursor T- and B

cells [49], while decrease in the function and number of

hematopoietic stem cells also can affect the number of different

circulating immune cells, both lymphoid and myeloid [50,51].

Besides age associated decreases in the number of adaptive and

innate immune cells, functional immunosenescence was also

reported in humans [49,52]. In contrast to leucocytes, we did

not find support for immunosenescence acting upon the two other

humoral immune parameters we measured – BKA and IgG

concentration –, neither in our cross-sectional nor in our

longitudinal data, results which are consistent with previous

findings on humans [53,54].

Second, our study also provides evidence for a trade-off between

immunity and survival. Individuals with above average WBC

counts and IgG concentrations were less likely to survive from one

census to the next. Again, this could be a consequence of increased

WBC and IgG levels mirroring an on-going infection or

infestation. However, we found that parasite infections did not

correlate with survival probability in S. bilineata, suggesting that

the mere allocation of resources to the immune system might be

costly in terms of survival. The existence of this trade-off should

trigger a selective disappearance of individuals with high WBC or

IgG with time and result in a decrease in those immune

parameters with age in the population (between-individual effect),

independently of the effect of immunosenescence (within-individ-

ual effect). This prediction is consistent with our observations of

age-related decreases in WBC in the cross-sectional data set. Yet,

older individuals had higher IgG concentrations than young ones,

which supports the hypothesis that high antibody concentration

may be a consequence rather than a cause of longevity [11]. Thus,

higher IgG concentrations at an older age may reflect cumulative

exposure to pathogens over time [54].

Various proximate mechanisms can account for the costs

associated with high WBC counts. For example, oxidative stress,

the imbalance between highly reactive pro-oxidants and neutral-

ising antioxidants, might be one such proximate mechanism.

Oxidative stress leads to the damage of cell components, to

accelerated senescence of cells and eventually senescence and

death of the organism [55–57]. WBCs produce pro-oxidants to

directly kill pathogens [58] and to enhance the activation of T-

lymphocytes [58,59]. Therefore, high WBC count may be

associated with increased oxidative stress and oxidative damage.

In a previous experiment, we showed that a cellular immune

response causes an increase in concentration of damaging pro-

oxidants in blood of the Neotropical short-tailed fruit bat, Carollia
perspicillata, and that the number of immune cells is positively

correlated with measures of oxidative stress [60]. Given that cells

become less resistant to oxidative stress with increasing age [61],

older individuals may be more affected by oxidative stress induced

by WBCs. Overall high levels of WBCs may therefore be

evolutionary selected against to minimise oxidative damage and

early senescence in animals.

A second proximate mechanisms underpinning the cost of

maintaining high levels of immune functions is that it may increase

the risk of autoimmunity [62,63]. Autoimmunity is mainly

promoted by the increased production of antinuclear antibodies

that usually bind foreign proteins, but may also be produced

against antigens of the organism itself. In contrast to Graham and

colleagues [11] we found that individuals with high IgG

concentrations were less likely to survive the following six months

than individuals with low concentrations, which is consistent with

the idea of increased risk of autoimmunity. IgG concentrations

being higher in older bats, but not increasing with age within

individual, furthermore suggests selective disappearance of indi-

viduals with low IgG concentrations from the population.

In general, immune effectors which have either high develop-

mental, maintenance or pathological costs (e.g. immune cells,

immunoglobulins or acute phase proteins; [23]), seem to be traded
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against longevity. In contrast, we observed that relatively low-cost

constitutive innate immunity - measured here as the bacterial

killing ability (BKA) of the plasma against Escherichia coli - were

not connected with age, neither in the cross-sectional nor

longitudinal data set. Also, BKA was not associated with survival

probability.

The relationship between immunity and longevity may however

be different in populations or species under higher pathogen and

parasite pressure than S. bilineata. On the one hand, high levels of

infection could hide the trade-off between immunity and survival

in situations for which high levels of WBC and IgG are cues of

ongoing, acute or chronic infection that can precede the death of

individuals. On the other hand, in a highly pathogenic environ-

ment the trade-off may express itself differently because the cost of

investing resources in the immune system may be overcome by

benefits of surviving those infections. This could explain for

instance, why immunoglobulin concentration was positively

associated with survival in Soay sheep [11] and recapture rate in

house martins (Delichon urbica) [64] but negatively associated with

survival in S. bilineata (this study). Indeed, Soay sheep infected by

nematodes may face high mortality risks during harsh winters [65],

which may even lead to population crashes [66]. Furthermore,

longitudinal studies on the same population found age-related

changes in parasite resistance [67,68]. These findings potentially

indicate that endoparasite infections may involve higher costs in

Soay sheep than in S. bilineata, especially when resources are

limited.

Besides immune components being connected with survival, we

also found that females have a five times higher chance to survive

during the next six months than males. Our results are consistent

with a recent study showing male senescence in fitness and

reproduction in S. bilineata [24]. In most mammals, females have

higher survival chances than males, which in monomorphic

species is frequently hypothesized to be caused by risky behaviour

(e.g. [69]) or increased investment in reproduction in males.

Indeed, mass-specific field metabolic rate of males increases with

harem size in S. bilineata [70], suggesting an overall high cost of

courtship display in this species, which may explain why males

have lower chances of survival than females.

Variations in immune components within bat species may be

important in explaining the susceptibility of individuals and

populations to pathogens and also their reservoir-competence.

For example, it has been found that bats that are immune

suppressed are more likely to develop the white-nose syndrome

caused by the fungus Pseudogymnoascus destructans in North

America [71,72]. In this context, our study suggests that older

individuals with fewer WBCs may be more susceptible to this

lethal disease. If older individuals are indeed more prone to get

infected by virulent pathogens, then understanding how human-

driven environmental changes impact the age structure of wild

populations may help to better understand the dynamic of harmful

zoonotic diseases. More generally, our findings confirm that

longitudinal studies on free-ranging populations should be

encouraged in order to tackle both fundamental and applied

questions related to the senescence of organisms.
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